Navigation in Partially Observed Dynamic Roadmaps
نویسنده
چکیده
We consider robot navigation in environments consisting of a known static map, but where dynamic obstacles of varying and unknown lifespans appear and disappear over time. We describe a roadmap-based formulation of the problem that takes the sensing and transition uncertainty into account, and an efficient online planner for this problem. The planner naturally displays behaviors such as persistence and obstacle timeouts, and is able to make inferences about obstacle types even with impoverished sensors.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملDynamic Multi-Objective Navigation in Urban Transportation Network Using Ant Colony Optimization
Intelligent Transportation System (ITS) is one of the most important urban systems that its functionality affects other urban systems directly and indirectly. In developing societies, increasing the transportation system efficiency is an important concern, because variety of problems such as heavy traffic condition, rise of the accident rate and the reduced performance happen with the rise of p...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملMotion compensation for interventional navigation on 3D static roadmaps based on an affine model and gating.
Current cardiac interventions are performed under 2D fluoroscopy, which comes along with well-known burdens to patients and physicians, such as x-ray exposure and the use of contrast agent. Furthermore, the navigation on complex structures such as the coronaries is complicated by the use of 2D images in which the catheter position is only visible while the contrast agent is introduced. In this ...
متن کامل